十州十宗 0000 田玄英4 8

九州大学 2023 埋杀弗1向	
以下の問いに答えよ。	
(1) 4 次方程式 $x^4 - 2x^3 + 3x^2 - 2x + 1 = 0$ を解け。	
(2) 複素数平面上の \triangle ABC の頂点を表す複素数をそれぞれ α , β , γ とする。 $(\alpha-\beta)^4+(\beta-\gamma)^4+(\gamma-\alpha)^4=0$	
が成り立つとき、 \triangle ABC はどのような三角形になるか答えよ。	
THE BEING TO A PRICE OF THE BOY BACKS	
誘惑のない動画や公式検索アプリ okke	

(1) 相反方程式 →係数が左右対称のもの ラ χ で割って、 X+ 文を置換すれば 次数を下げられるので解きやすい! > キロの確認はだれずに! $\chi^4 - 2\chi^3 + 3\chi^2 - 2\chi + | = 0$ X=0は解ではないので、X2で 西边割了, $\chi^{2} - 2\chi + 3 - \frac{2}{\chi} + \frac{1}{\chi^{2}} = 0$ 解の集合が 変わらない $\left(\chi^2 + \frac{1}{\chi^2}\right) - 2\left(\chi + \frac{1}{\chi}\right) + 3 = 0 \dots 0$ $\chi^2 + \frac{1}{\chi^2} = \left(\chi + \frac{1}{\chi}\right)^2 - 2 \xi'$

 $(t^2-2)-2t+3=0$ $t^2 - 2t + | = 0$ $(t-1)^2 = 0$ t= | xt307" $\chi^2 - \chi + | = 0$ $\chi = \frac{1 \pm \sqrt{3}i}{2} \quad \text{sixons in the properties of the properti$ - // 2コずっ重なる

- (2) どうやって(1)の形にするか? (初見の対応は前回の動画で)
 - $(\chi \beta)^{4} + (\beta \beta)^{4} + (\gamma \chi)^{4} = 0$ $\sqrt{??}$ $\chi^{4} - 2\chi^{3} + 3\chi^{2} - 2\chi + | = 0$ | χ^{4}
 - 又一月,月一下,1一人は、全てバラバラにてれるらけではなく、2つ決まれば、 残りは自動で決まる。
 → 実質2変数。
 - ・ さらに、その2更数の同次式になる →分数にして1変数化できる。 →この方程式が(1)の形になるんじゃないか?

そこで、例えば、<u>βード</u>とかで、」変数化してみるか、符号か、十になる…(前回)

一つこの形は ナーβ の方がありがたい

-> これで「皮数化すれば" (i)の形が現れる!!

2キのより、南辺2⁴で割って、 | 変数化が

$$1+(\frac{w}{2})^{4}+(\frac{w}{2}-1)^{4}=0$$
 ~ ②
→ このまま $\frac{w}{2}$ についてもも53んのド
こて、 $\frac{w}{2}=v$ ×おくと、②は
 $2v^{4}-4v^{3}+6v^{2}-4v+2=0$
 $v^{4}-2v^{3}+3v^{2}-2v+1=0$
 $v^{4}-2v^{3}+3v^{2}-2v+1=0$
 v^{2} である。
つまり、 題意の式は
 v^{2} である。
つまり、 題意の式は
 v^{2} である。
つまり、 題意の式は
 v^{2} である。
の転移動 → 極形式にしたい

 $\triangle ABCは、B(B)を中じに A(x)を$ $<math>\pm 60^{\circ}$ 回転させた、点が C(T) となる。 7 ± 11 、正三角形である。

