大阪大学 2022 理系第4問

 $f(x) = \log(x+1) + 1$ とする。以下の問いに答えよ。

- (1) 方程式 f(x) = x は、x > 0 の範囲でただ 1 つの解をもつことを示せ。
- (2) (1) の解を α とする。実数 x が $0 < x < \alpha$ を満たすならば、次の不等式が成り立つことを示せ。

$$0 < \frac{\alpha - f(x)}{\alpha - x} < f'(x)$$

(3) 数列 $\{x_n\}$ を

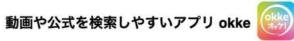
$$x_1 = 1$$
, $x_{n+1} = f(x_n)$ $(n = 1, 2, 3, \dots)$

で定める。このとき、すべての自然数nに対して、

$$\alpha - x_{n+1} < \frac{1}{2}(\alpha - x_n)$$

が成り立つことを示せ。

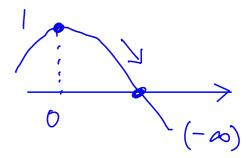
(4) (3) の数列 $\{x_n\}$ について、 $\lim_{n\to\infty}x_n=\alpha$ を示せ。



$$\xrightarrow{\chi \to \infty}$$
 $-\infty$

かつり切はXフーして連続なので、 でラフト=り(x)はXフロで、X軸と ただしつの共有点をもつ。

つまり、身(x)=のは 次>0にただりの 実数解でもつ。 ②



(2) 就行錯誤、は前回の動画で、
(1)の解を以 (1)の解を以 (1)の解を以 (1)の 解を以 (1)の 方(以) = 0, 以 > 0

· 右側について

定理の前提!

f(y)は $0<\chi \le y \le x で連続かつ$ 微分可能なって、平均値の定理より<math>f(x) - f(x) = f(c) …② 、 $\chi < c < x$

を満たすくが存在する。

- → あとは f(c) < f(x) をはすだけ、
- → イが単調派のであることを言えばした。

227'', $f''(y) = -\frac{1}{(y+1)^2} < 0 + 1$,

f(x)は分って、狭義単調減少. よってO<XCCに対して

f'(x) > f(c) がが女するので、

$$\frac{f(x)-f(x)}{x-x} < f(x) \qquad \text{whit} \quad x = 0.$$

$$\text{Whit} \quad x = 0.$$

$$\text{Whit} \quad x = 0.$$

$$\text{Whit} \quad x = 0.$$

$$(3) \quad \chi - \underbrace{\chi_{n+1}}_{f(\chi_{N})} < \frac{1}{2} \left(\chi - \chi_{n} \right)$$

・メーXn>のを数学的帰納法で示す。 潮化式で定まるでは、帰納法と 相性より!

(1)の議論において タ(1)= log 2 >のより メ>1であるので、

(ii) $n = k(k \in N)$ のとき、 $X - X_k > 0$ E仮定する。 $\Rightarrow \pi(t_{n} \cap 1t \land - X_{k+1} > 0$ $\Leftrightarrow \chi - f(X_k) > 0$ (2) の左側が見える!

メートラのが、なり生つ。

→ 前提を示さないといけない。 スK< 以はのk、 XK>0のサ. ここでます"、 $\chi_1 = 1$ と $\chi_{n+1} = \log(\chi_{n+1}) + 1$ よ")、 「最低的に全てのいられて" $\chi_n \ge 1$ か"が立。… (*) $\chi_n > 0$ で"もいいか"。 (2)の前根かり?! あとで使うのて"より キビして、

おて $1 \le \chi_{k} \subset \chi_{k} \subset \chi_{k}$ (2)で示した左側の不等式から

 $\Leftrightarrow \Upsilon - f(\chi^k) > 0 \quad (.: \chi^k < x)$

以上(i)(i)よ)全てのNENで メー Xn >0が成立する。… (**)

よってホオかさ不等式は $\frac{\chi - \chi_N}{\chi - \chi_N} < \frac{5}{1} \quad \dots \quad 3 \quad \kappa \not \leq 3^\circ$ (2)の前提 ここで、 (= ×n < × +) (2)で示した 右側の不等式から $\frac{\lambda - f(\chi_n)}{\lambda - \chi_n} < f(\chi_n) \sim \text{P} \pi \pi \pi 1 \pm 7.$ $f'(\chi_n) = \frac{\chi_{n+1}}{\chi_{n+1}} \quad \forall_n \chi_n,$ $(*) \epsilon') \qquad f'(\chi_n) \leq \frac{1}{1+1} = \frac{1}{2} \quad \zeta' \circ \tau',$

示された。

$$(xx) \qquad (3) \qquad <\left(\frac{7}{1}\right)_{N-1} \left(x-x^{1}\right)$$

$$0 < \frac{4}{1}\left(x-x^{1}\right) < \frac{5}{1}\left(x-x^{1}\right)$$

$$\left(\frac{1}{2}\right)^{n-1}\left(\mathcal{A}-\mathcal{X}_{1}\right)=\left(\frac{1}{2}\right)^{n-1}\left(\mathcal{A}-1\right)$$

$$\underset{N\to\infty}{\longrightarrow}$$
 0 $\mathcal{I}_{\mathcal{L}} \cap \mathcal{T}''$

はさけうちの原理より