複素数平面・図形への応用⑨ 大阪大学 2019 理系第2問

数学Ⅲ特講

自然数 a, b に対し、 $w = \cos \frac{a\pi}{3+b} + i \sin \frac{a\pi}{3+b}$ とおく。

過去問

ただし、i は虚数単位とする。複素数 z_n $(n=1,2,3,\cdots)$ を以下のように定める。

$$z_1 = 1$$
, $z_2 = 1 - w$, $z_n = (1 - w)z_{n-1} + wz_{n-2}$ $(n = 3, 4, 5, \cdots)$

このとき以下の問いに答えよ。

- (1) a=4, b=3 のとき、複素数平面上の点 z_1 , z_2 , z_3 , z_4 , z_5 , z_6 , z_7 をこの順に線分で結んでできる図形を図示せよ。
- (2) a=2, b=1 のとき、 z_{63} を求めよ。
- (3) さいころを 2 回投げ、1 回目に出た目を a、2 回目に出た目を b とする。このとき $z_{63}=0$ である確率を求めよ。

検索しやすい勉強アプリ okke

ホイント

問題文がよくわからないときは、「2サイブラフヤ表で情報を可視化」・小さい数などで具体的に実験の意識を! そこからルールなどをつかんで、抽象化させるイメーシー。

→今回の問題は小問でこれらも考えるが、 自わで考えるりもも!

解説

(1) $\alpha = 4$, $\alpha = 3$ or $k \neq 1$. $W = \cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi + k \neq 3$. $L_3 = 4\pi^{"} + 2\eta = 7\pi^{"} + 3\pi^{"} + 3\pi^{$

〈実験〉 民験> $= -\frac{1}{2} + \frac{13}{2} \hat{\lambda} + 1/1$ になまうと? $\frac{1}{2} = 1 - \omega$ $=\frac{3}{2}-\frac{13}{2}$ $2_3 = (1-\omega)2_1 + \omega 2_1$ $= \left(\frac{3}{2} - \frac{\sqrt{3}}{2}\dot{1}\right) - \frac{1}{2} + \frac{\sqrt{3}}{2}\dot{1}$ $= 1 - \int 3 \bar{\chi}$ 2n = (1-w) 2n-1 + w 2n-2 $\Leftrightarrow 2n-2n-1$ 回転を表すと見れる、 と気付く!

$$2_{2} = 1 - \omega$$

$$= 2_{1} - \omega$$

$$\Rightarrow 2_{2} - 2_{1} = \omega \left(0 - 2_{1}\right) \qquad \cdots \qquad 0$$

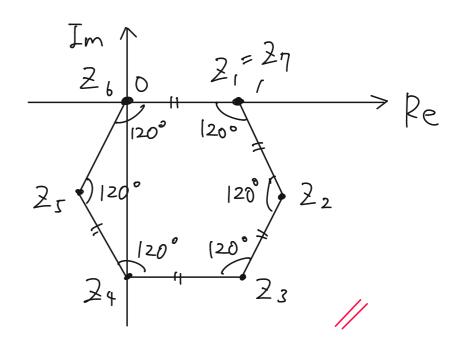
$$2_{n} = \left(1 - \omega\right) 2_{n-1} + \omega 2_{n-2}$$

$$\Rightarrow 2_{n} - 2_{n} = \omega \left(2_{n-2} - 2_{n-2}\right)$$

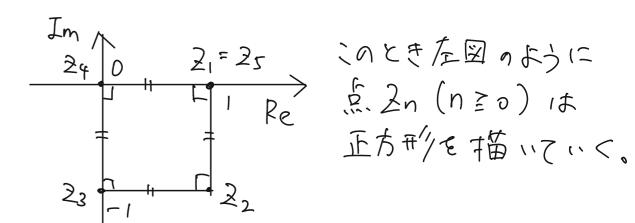
$$\Leftrightarrow 2n - 2n - 1 = W(2n - 2n - 1) \cdots 2$$
 $(n \ge 3)$

$$20 = 0$$
 とおくと、①②より点 $2n (n \ge 2)$ は、
点 $2n-2$ を点 $2n-1$ のまりりに $arg(w)$
 ②転させた点となる。 $(|w|=|$ に留意)

いまいの偏角は(0~2元)の範囲で")
2元であることをひまえると、 以下同、 点、2、~2つを順に線分で結んた"図は 以下の通りとなる。



(2) Q = 2, Q = 1 のとき、 $W = \omega S \frac{\pi}{2} + \hat{\iota} S in \frac{\pi}{2}$ となるので" $W \circ$ 偏角は $\frac{\pi}{2}$ である。



よって 2n の値は NE + で割った余りで $分類 <math>\pm L$ 、 $63 \div 4 = 15 \cdots 3$ より、 263 = 23 = -i を得る。

(3) 262 = 0 ← つまり 20 と 重なるのは、 正月角形とか正り角形とかを 描く とき、というのはわかる。(63の約数) ただ、正の角形とならないときに 263 と 20 が重なることは無いと 言いわれるかる

→この検討が大変。 数式の利用を考える。

2 1=7 · 7,

$$2n-2n-1=-\omega(2n-1-2n-2)$$

これは20=0として これは解ける.

り32で成り立つ、繰り返し用いれば、

これはり=してでも成り立つ。

$$\begin{array}{lll}
\xi_{7}7 & 2n = 20 + \sum_{k=1}^{N} (-w)^{k-1} \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)^{N}}{1 + w}} & (w \neq -1 \text{ oc} \neq) \\
& = \sqrt{\frac{1 - (-w)$$

これより、
$$263 = 0 \times f \times 3 + \infty 9$$

※要十分条件は、一式で講論できる。
 $[-(-\omega)^{63} = 0 \quad かつ \quad \omega = -1$
⇔ $(\omega s)(\pi + \frac{\alpha \pi}{3 + \alpha}) + i \sin(\pi + \frac{\alpha \pi}{3 + \alpha})^{63} = 1$
点 $\omega \wedge \beta$ 原点対称より かつ $\frac{\alpha \pi}{3 + \alpha} + \pi$

→ ここからは、36通りのしらみつぶしが早るう。 いしは鋏りたい。

これを満たす(9,日)の組を考える。 一半分に! ③より3+0+日が偶数、つまり0+日が奇数であることを踏まえると、

JE固定すると早い(登場回数が多い) X X a + 3 + 6 51 4+のはその倍数になるか?

(a, d)は「組あり、求める確率は 736