名古屋大学 2023 理系第3問

(1) 方程式 $e^x = \frac{2x^3}{x-1}$ の負の実数解の個数を求めよ。	
(2) $y = x(x^2 - 3)$ と $y = e^x$ のグラフの $x < 0$ における共有点の個数を求めよ。	
(3) a を正の実数とし、関数 $f(x) = x(x^2 - a)$ を考える。 $y = f(x)$ と $y = e^x$ のグラフの $x < 0$ における共有点は 1 個のみであるとする。このような a がただ	
1つ存在することを示せ。	
誘惑のない動画や公式検索アプリ okke	

☆初見での見考つかもスは前回動画で!! 女実数解と共有点 (式とリーラフ)は行き来する意識で!

(1) 直接解けないのでがうフで検針、
一)片方にまとめて関数の増減を
考える。

$$g(x) = e^{x} - \frac{2x^{3}}{x-1} \times 5$$

$$g(x) = e^{x} - \frac{6x^{2}(x-1) - 2x^{3}}{(x-1)^{2}}$$

$$= e^{x} - \frac{4x^{3} - 6x^{2}}{(x-1)^{2}} \rightarrow \text{何回後分}$$

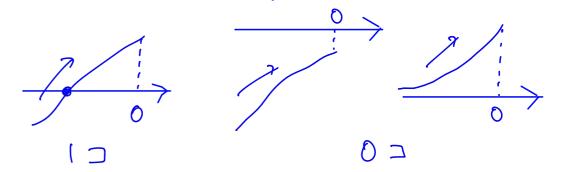
$$(7 = e^{x}) \times \text{同日本分分}$$
定性的な情報
を探3. (17-77で考えても、)

気付ける(前回)/

ここで、X < 0 のもとで、 $e^{(x)} > 0$, $\frac{4x^3 - 6x^2}{(x-1)^2} = \frac{2x^2(2x-3)}{(x-1)^2} < 0$ たっで、 $g^{(x)} > 0$ である。 = 0 は参えられないが、 $g^{(x)} \circ$ 権滅を考えるのに必要な $g^{(x)} \circ$ 符号はめかった。…

よってX<Oでよりは狭義単調増加である。

あと何がわかればいい? 西端の状況+連続性



いま、
$$f(0) = 1$$

 $\lim_{\chi \to -\infty} f(x) = \lim_{\chi \to -\infty} (e^{\chi} - \frac{2\chi^2}{1 - \frac{1}{\chi}})$
 $= -\infty$ おせいい
 $f(x)$ は $\chi \le 0$ で連続なってい
 $g(\chi) = 0 \Leftrightarrow e^{\chi} = \frac{2\chi^3}{\chi - 1}$
は $\chi < 0$ に 1つ 実数解をもう。

(2) 前回は2つのグラフかり考察にかが、 面倒なので、(1)と同様に(つにまとめて グラフの増減を調べる. $ん_1(x) = e^{x} - \chi(\chi^2 - 3)$ とおき、 サ = $ん_1(x)$ が、 χ <0つで、 χ 軸との共存点、 を何個持つか調べる。 $\sqrt{\chi}(\chi) = e^{\chi} - 3\chi^2 + 3$ 一つこの段階ではまだりからない、 もうしのど分 $R''(x) = e^{x} - 6x$ MIIII whiteX<098 + R,"(x) >0 tog ?" X<Oでん(x)は狭義単調増加 -> ここからん((X)の行号を知りたいので" 端を調べる! ここでん((0)=4>0 $\lim_{x \to \infty} h'(x) = -\infty$ 7" π'). $h_{i}(x)$ ん((x)は X ≤)で連続なって、 なん(x) = 0は X < 0に 1つ解をもち、それを

X=Xとかく、わからないときは置く!

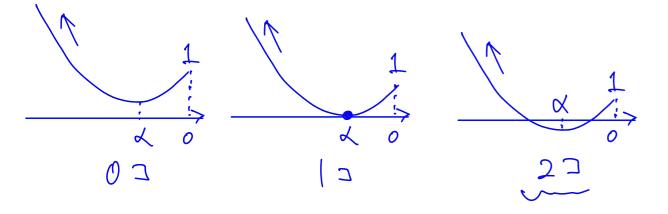
→これでん(x)の増減わかった!!

, ,		• (0		
1, (x)	_	\bigcirc	+			\c /2
$\Lambda_{I}(x)$	(∞) />		Я	1	_	

ここら近の値が大事!りかるとこから

$$\begin{pmatrix} \chi_{1}(0) = 1 \\ \lim_{x \to -\infty} \chi_{1}(x) = \infty \end{pmatrix}$$

→また"可能性は3つある!!



でき、ん、(x)は求められなり、 (xはん(x)=0の解で、ピー3よ+3=0 (を満たすが、そこから ピー x (x-3)の値 はなめられん!)

たた、サーピャンサース(パー3)のグラフを書てて、ユコでありるうな学なりはつく、(前回七巻照)

→夏の値をとる Xが見っかればのたが

X=-1? X=-2?このあたり、おめやすいもの

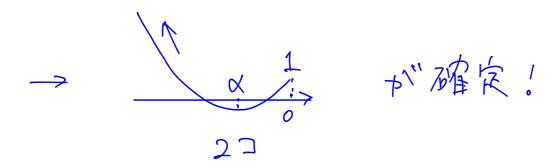
ここで、ん、(一)を考えると、

$$h_1(-1) = e^{-1} - 2$$

$$= \frac{1}{e} - 2 < 0 \quad 7'' = 0$$

$$= \frac{1}{e} - 2 < 0 \quad 7'' = 0$$

 $\chi<0$ でいる最小値 $\Lambda_{l}(\alpha)<0$ で得る。



人(X)は X ≤ 0 で連続なりで、増減を 考えて、 X < 0 で、X軸と2つの共気を もつ。

(3) (2) と同じようにいけそう. $\mathcal{A}_{2}(x) = \ell^{x} - \chi(x-a)$ とおき、 $\mathcal{Y} = \mathcal{A}_{2}(x)$ が $\chi < 0$ つ" χ 軸 との共存点、 を 1 個 持っような $\Lambda(70)$ の 個数を考える。

 $R_2'(x) = e^{x} - 6x$ MIEE has:X<098 + R2(x) >0 Tag 7" X<0で代2(X)は狭義単調増加 →ここからん(x)の符号を知りたいので" 満を調べる! $(2.7)^{\circ} / (2.0) = [+0.70)$ $\lim_{x \to \infty} h_2(x) = -\infty$ 7" π "). $ん_2(x)$ は $\chi \leq 0$ で連続なって、 $ん_2(x) = 0$ は $\chi < 0$ に 1 = 20 - 1 + -1つ解をもち、それを

 $\chi = \beta$ とかく、わからないときは置く!

一つこれで、 $\Lambda_2(x)$ の槽減わかった!

こいら迎ばまだ(2)と全<同じ

このとき
$$f_{2}(x)$$
の $f_{2}(x)$ の $f_{2}(x)$ の $f_{2}(x)$ $f_{2}(x)$

 \mathbb{D} t) $\alpha = 3\beta^2 - e^{\beta} - \cdots \mathbb{D}'$ ②に代入すると $e^{\beta} - \beta \left(\beta^2 - (3\beta^2 - e^{\beta})\right) = 0$ $(\beta-1)e^{\beta}=2\beta^3$ β<のよりβ-1+のでは割れない $e^{\beta} = \frac{2\beta^3}{\beta-1} = \frac{2\beta^3}{\beta}$ (1)の議論より、 $e^{x} = \frac{2x^{3}}{x-1}$ (if x < 0 (if f = f = 1) 実教解をもつので、③も満たすβ(<0) はただり存在し、それに対して ①でひかでまる。 →あとはこれがの>0を満たすか! その符号を確認すると

$$0 = 3\beta^{2} - e^{\beta} - 20 \pm 3 \text{ (i.3)}$$

$$= 3\beta^{2} - \frac{2\beta^{3}}{\beta - 1} + \frac{2\beta^{3}}{\beta - 1} = \frac{\beta^{2}(\beta - 3)}{\beta - 1} + \beta^{2}$$

$$\beta < 0 \text{ of } \xi \neq 0 \text{ of } \xi \neq$$

Dのを満たすの(70)はただり

存在することかで、されてこ。