東北大学 2022 理系第5問

座標空間内において、ベクトル $\overrightarrow{a}=(1,2,1),$ $\overrightarrow{b}=(1,1,-1),$ $\overrightarrow{c}=(0,0,1)$ が定める 2 直線 $l:s\overrightarrow{a},\ l':t\overrightarrow{b}+\overrightarrow{c}$ (s,t は実数)

を考える。点 A_1 を原点 (0,0,0) とし、点 A_1 から直線 l' に下ろした垂線を A_1B_1 とおく。次に、点 $B_1(t_1\overrightarrow{b}+\overrightarrow{c})$ から直線 l に下ろした垂線を B_1A_2 とおく。同様に、点 $A_k(s_k\overrightarrow{a})$ から直線 l' に下ろした垂線を A_kB_k 、点 $B_k(t_k\overrightarrow{b}+\overrightarrow{c})$ から直線 l に下ろした垂線を B_kA_{k+1} とする手順を繰り返して、点 $A_n(s_n\overrightarrow{a})$, $B_n(t_n\overrightarrow{b}+\overrightarrow{c})$ (n は正の整数)を定める。

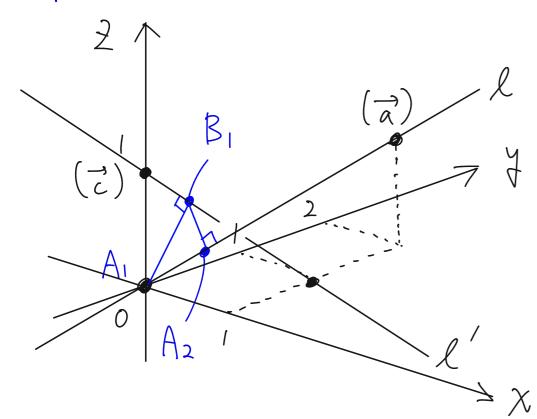
- (1) s_n を用いて s_{n+1} を表せ。
- (2) 極限値 $S = \lim_{n \to \infty} s_n$, $T = \lim_{n \to \infty} t_n$ を求めよ。
- (3) (2) で求めた S, T に対して、点 A, B をそれぞれ $A(S\overrightarrow{a})$, $B(T\overrightarrow{b}+\overrightarrow{c})$ とおくと、直線 AB は 2 直線 l, l' の両方と直交することを示せ。

誘惑なく動画や公式を探せるアプリ okke

める2直線	
く。次に、点	
。 <i>l'</i> に下ろし	
り返して、点	
 复線 AB は 2	
C	
ry okke	

複雑(き)な)設定

→ 目で見てわかる形(図·グラフ·表)に可視化すると立式(やずい!



(1) どう立式するか?

$$\begin{array}{ccc} A_n & \longrightarrow & B_n & \longrightarrow & A_{n+1} \\ (S_n \overrightarrow{a}) & (t_n \overrightarrow{a} + \overrightarrow{c}) & (S_{n+1} \overrightarrow{a}) \end{array}$$

それぞれを立式についけば、 たれをSuで表す SunをSuで表せる Suntを tu が ででいけるか、 点の作り方を式にするたづけ、

ます"、 $\overrightarrow{AnBn} \perp l' + l'$ 、 $\overrightarrow{AnBn} \cdot \overrightarrow{l} = 0 \rightarrow \cancel{K} + \cancel{L} + \cancel$

3
$$t_{n} - 1 - 2 S_{n} = 0$$
 $\Rightarrow t_{n} = \frac{2S_{n} + 1}{3} \dots (2) \times 63.$
 $\Rightarrow t_{n} = \frac{2S_{n} + 1}{3} \dots (2) \times 63.$
 $\Rightarrow t_{n} = 0 \quad t_{n} \cdot \vec{a} + \vec{c}$
 $\Rightarrow t_{n} = 0 \quad t_{n} \cdot \vec{a} + \vec{c}$
 $\Rightarrow t_{n} \cdot \vec{a} - t_{n} \cdot \vec{c} - \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{a} - t_{n} \cdot \vec{c} - \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{a} - t_{n} \cdot \vec{c} - \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{a} - t_{n} \cdot \vec{c} - \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{a} - t_{n} \cdot \vec{c} - \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{a} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} \cdot \vec{c} = 0 \dots (3)$
 $\Rightarrow t_{n} \cdot \vec{c} = 0 \dots (3)$

(2)解ける漸化式で与えられた 数列の極限→解いて飛ばせば"ok (数学皿特講・極限の)

九nについても、同様に $Bn \to An+1 \to Bn+1$ から漸化式を作ってものk(前回の初見動画) でももっとうりにいける! 関係式あり、 ここで、②より $t_n = \frac{2S_n + 1}{3}$ なので、

$$T = \lim_{N \to \infty} t_{N}$$

$$= \lim_{N \to \infty} \frac{2S_{N} + 1}{3}$$

$$= \frac{2 \cdot \frac{S}{14} + 1}{3}$$

$$= \frac{4}{7}$$

$$= \frac{4}{7}$$

$$= \frac{1}{3}$$

$$= \frac{4}{7}$$

$$= \frac{1}{3}$$

$$= \frac{4}{7}$$

$$= \frac{1}{3}$$

$$= \frac{1}$$

こで停滞

方向バクトルりかっているので、内積計算にて垂直条件確めればのと!

ゼロベクトルだと内積は0になる!

内積がの ← 垂直

$$\overrightarrow{AB} = \begin{pmatrix} \frac{3}{14} \\ -\frac{1}{14} \end{pmatrix} \times \cancel{R} \text{ as } 5 \text{ h. 3 or 7},$$

確かに

$$\overrightarrow{AB} \cdot \overrightarrow{a} = \frac{3}{14} - \frac{2}{7} + \frac{1}{14} = 0$$

$$\overrightarrow{AB} \cdot \overrightarrow{a} = \frac{3}{14} - \frac{1}{7} - \frac{1}{14} = 0 \quad \text{E.72'}$$