大阪大学 2017 文系第2問

実数 x, y, z が、x + y + z = 1、x + 2y + 3z = 5 を満たすとする。

(1) $x^3 + y^3 + z^3 - 3xyz$ の最小値を求めよ。

(2) $z \ge 0$ のとき、xyz が最大となる z の値を求めよ。

誘惑のない動画や公式検索アプリ okke

☆分変数関数の最大最小

- 一つ 一変数で考えたいはが基本
- → 「変数 にできれば"平方完成で総分でかる。
- 」・文字消去 ← 関係式で消せるとき
 ・文字固定 ←消せないとき

あとは媒介変数表示, 有名不等式も

(1) 2つの 等式 によって、1文字で全て表せる.→文字消去でいける.

$$\begin{cases}
\chi + 3 + 3 = 1 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if } \\
\chi + 23 + 32 = 5 & \dots & \text{if }$$

① $\times 2 - ②$ 年)、 ← 午 5 消 す $\chi - 2 = -3$ $2 = \chi + 3$ … ③

①x3 - ②xり $\leftarrow 2$ を消す $2\chi + \xi = -2$ $\xi = -2\chi - 2$ … ⑤」 これで必要+分 今回は $\xi / 2$ に範囲もなく、ラク.

→ X³+ y³+ 2³ - 3 X は 足に 代入して 3次関数で、微分でもいいか、 見るからにアし、

について、欠が全ての実数をとるときの
最小値を考えればよいので、
対応するなり、2
は必ずある
タス²+21×+19=9(x+
$$\frac{7}{6}$$
)²+ $\frac{27}{4}$
つまり $\chi = -\frac{7}{6}$ のとき最小値 $\frac{27}{4}$ をとる。

(2) 誤り例 相加相乗平均より $3 \overline{\chi} y 2 \leq \frac{\chi + y + 2}{3} = \frac{1}{3}$ よって $\chi y 2 \leq \frac{1}{27}$ となるので $\chi y 2$ の最大値は <u>1</u> → 何がが义?まず符号. あとは、 等号成立条件はX=Y=2のときたが、そのときたが、そのとき $\{X+Y+Z=1\}$ を同時に満たす $\{X+2Y+3Z=5\}$ ($\{X,Y,Z\}$)は存在 ($\{X,Y,Z\}$)は存在 ($\{X,Y,Z\}$)は存在 ($\{X,Y,Z\}$)は存在 ($\{X,Y,Z\}$)

ということで同じょうに文字消去。 $2 \, \stackrel{?}{\rightarrow} \stackrel{?}$

$$x42$$

= $(2-3)(-22+4)2$
= -22^3+102^2-122
これを $f(2)$ をおく。
 $f(2)$ の $2 \ge 0$ での 最小値をとる
2の値を求める。 ← これがコール!
3次なのでじか!

$$f'(2) = -62^{2} + 202 - 12$$

$$f'(2) = 0 \ \text{R} < c$$

$$2 = \frac{5 \pm \sqrt{7}}{3}$$

$$f(3) = -62^{2} + 202 - 12$$

$$f'(4) = 0 \ \text{R} < c$$

$$f'(5) = 0 \ \text{R} < c$$

$$f'(5) = 0 \ \text{R} < c$$

$$2 = 0$$
 での $f(2)$ の増減は
 $\frac{2}{3}$ の $\frac{5-\sqrt{7}}{3}$ $\frac{5+\sqrt{7}}{3}$ $\frac{7(2)}{(2)}$ 0 十 0 一
 $f(2)$ 0 入 $\frac{7}{3}$

⇒ あとは
$$f(\frac{5+\sqrt{5}}{3})$$
 と 0 との大小! $f'\epsilon 0 = \hat{f}_3 \hat{d}_1 \hat{d}_2 \hat{d}_3 \hat{d}_4 \hat{d}_5 \hat{d$

$$-22^{3} + 102^{2} - 122 = \left(\frac{1}{3}2 - \frac{5}{9}\right)\left(-62^{2} + 202 - 12\right) + \frac{26}{9}2 - \frac{20}{3}$$

 $\begin{array}{ll}
x \, f_{x} \, 3 \, o \, \tau^{2}, \\
f\left(\frac{5+\sqrt{\eta}}{3}\right) &= \frac{2\theta}{9} \times \frac{5+\sqrt{\eta}}{3} - \frac{20}{3} \\
&= \frac{2\theta\sqrt{\eta} - 40}{2\eta} \\
&= \frac{4}{2\eta} \times \left(\frac{7\sqrt{\eta} - 10}{\eta}\right)
\end{array}$

ここで、 $\int_{0}^{\infty} > 2 + i$)、 $\int_{0}^{\infty} > 14 \times t \times 3 = 0$ で、 $\int_{0}^{\infty} = 14 \times 0 + i$) 大きい。 よって $2 \ge 0$ で f(2) が 最大となるのは $2 = \frac{5 + \int_{0}^{\infty}}{3}$ のときである。 〈别解〉 千(5+1分)の符号がわかればいいので、 f(z) = x 72 =(2-3)(-22+4)2という積の形に注目する! $2 = \frac{5+\sqrt{7}}{3}$ or $2 - 3 = \frac{\sqrt{7} - 4}{3} < 0$ $-22+4 = \frac{2-2\sqrt{7}}{2} < 0$

なって、f(z) = (2-3)(-22+4) 2について $2 = \frac{5+1/7}{3}$ での値は正である。 (以下同様)