九州大学 2023 文系第4問

 ω を $x^3=1$ の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で 4 つの 複素数 $0,1,\omega,\omega^2$ を並べていくことにより、複素数の列 z_1,z_2,z_3,\cdots を定める。

- $z_1 = 0$ とする。
- Z_k まで定まったとき、さいころを投げて、出た目を t とする。このとき Z_{k+1} を以下のように定める。
 - $z_k = 0$ のとき、 $z_{k+1} = \omega^t$ とする。
 - $z_k \neq 0$, t = 1, 2 のとき、 $z_{k+1} = 0$ とする。
 - $z_k \neq 0$, t = 3 のとき、 $z_{k+1} = \omega z_k$ とする。
 - $z_k \neq 0$, t = 4 のとき、 $z_{k+1} = \overline{\omega z_k}$ とする。
 - $z_k \neq 0$, t = 5 のとき、 $z_{k+1} = z_k$ とする。
 - $z_k \neq 0$, t = 6 のとき、 $z_{k+1} = \overline{z_k}$ とする。

ここで複素数zに対し、 \overline{z} はzと共役な複素数を表す。以下の問いに答えよ。

- (1) $\omega^2 = \overline{\omega}$ となることを示せ。
- (2) $z_n = 0$ となる確率を n の式で表せ。
- (3) $z_3 = 1$, $z_3 = \omega$, $z_3 = \omega^2$ となる確率をそれぞれ求めよ。
- (4) $z_n = 1$ となる確率を n の式で表せ。

誘惑のない動画や公式検索アプリ okke

☆とにかく手を動かして実験! まずは設定を正しく理解することに 全かを集中させる!

<"3<"3 ₪3

いは普通に解いて示せるので" まずやっとく (xwに役立つ)

 $(\chi - 1)(\chi_{s} + \chi + 1) = 0$

 $W^2 = \frac{-2 - 2\sqrt{3} v}{4}$ $=\frac{-1-\sqrt{3}\sqrt{3}}{2}=\overline{W}M'\bar{\pi}ZM3.$

 $x^{3} = 1$ $(x-1)(x^{2}+x+1)=0$ $x=\frac{-1\pm\sqrt{3}i}{2}$ 題意、より $w=\frac{-1+\sqrt{3}i}{2}$ (虚部 > 0)

→確かに状態といはの1,W,Woot.

- → 推移図が書けるので、 漸化式で、一般項を求める作戦で、 (直接求めるのはムス」い)
- → こまで見えていれば、全ての一般項をおいて解いていきたい。 ただ、実践的には(2)(3)を解きながら理解していく感じか、 一旦(2)(3)はるれぞれ解きます!

2n=0となる確率もPnとおCと、 題意より、下の推移となるので

$$\frac{2n}{0} \frac{2n+1}{3}$$

$$\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{1} \frac{1}{1$$

 $\gamma_{n+1} = \frac{1}{3} (1 - \gamma_n)$ を得了。 これを解くと、 $\mathcal{V}_{N+1} = -\frac{1}{3}\mathcal{V}_{N} + \frac{1}{3}$ $p_{n+1} - \frac{1}{4} = -\frac{1}{3} \left(p_n - \frac{1}{4} \right)$ $\mathcal{P}_{N} - \frac{1}{4} = \left(-\frac{1}{3}\right)^{N-1} \left(\underline{p}_{1} - \frac{1}{4}\right)$ $P_{n} = \frac{3}{4} \cdot \left(-\frac{1}{3}\right)^{n-1} + \frac{1}{4} \quad \text{Eta'3}.$ ♥ n=2で労労性チェック ア2=0?

(3) よっきの推移が整理できていれば"計算するだけ

$$2_3 = 1$$
 となるのは、
 $(2_2, t) = (w^2, 3)(w^2, 4)(1, 5)(1, 6)$
て"あ")、 2_2 は 等確率で" $w, w^2, 1$ であるか"ら、 $2_3 = 1$ となる確率は
 $\frac{1}{3} \times \frac{1}{6} \times 4 = \frac{2}{9}$

同樣に.

$$23 = W \times t \times 3 \text{ old}$$

 $(22, t) = (1, 3)(W, 4)(W, 5)(W^2, 6)$
 $7'' 5 3 + 5'$. $23 = W \times t \times 3$ 確率は
 $\frac{1}{3} \times \frac{1}{6} \times 4 = \frac{2}{9}$

$$\frac{1}{3} \times \frac{1}{6} \times 4 = \frac{2}{9}$$
 である。
 $\Rightarrow 23 = 0$ の確率で発当性インツクノ
 $\rightarrow 1, W, W^2$ は等確率?という
あたりがっく。

$$Y_{n+1} = \frac{1}{3} p_n + \frac{1}{6} g_n + \frac{1}{3} Y_n + \frac{1}{6} g_n \cdots g_n$$

直前がの (1,3) (w,4.5) (w²,6)
て"た=1.4 2n な
Sn+1 = $\frac{1}{3} p_n + \frac{1}{6} g_n + \frac{1}{3} Y_n + \frac{1}{6} g_n \cdots g_n$
直前がの (1,4) (w,3.6) (w²,5)
で"た=2.5 2n な
→ $Y_n = g_n$ はすぐ言えるう.

$$23 + \frac{1}{N} = \frac{1}{N}$$

$$\rightarrow \Gamma_{1}, S_{1} = \frac{1}{N}$$

$$ts' = S_{1} = 0 + \frac{1}{N}, \text{ for } n = \frac{1}{N}$$

$$tn = \frac{1}{N} \times ts^{2}, \qquad 2_{1} = 0$$

$$3 + \frac{1}{N} = \frac{1}{N} \times ts^{2}, \qquad 2_{1} = 0$$

$$3 + \frac{1}{N} = \frac{1}{N} \times ts^{2}$$

$$S_{n+1} = \frac{1}{3}p_n + \frac{1}{6}g_n + \frac{1}{2}S_n \dots g'$$

$$T''_{b}).$$

$$0 g_{n+1} = \frac{1}{3}p_n + \frac{1}{3}g_n + \frac{1}{3}S_n$$

$$3 S_{n+1} = \frac{1}{3}p_n + \frac{1}{6}g_n + \frac{1}{2}S_n$$

$$\Rightarrow 3 < \sum_{n=1}^{\infty} \sum_{n=1}^{\infty$$

一大はり全て等しかった! どうやって値を求めるか? 漸化式を解いてもいいけど、…

227" Pn+8n+rn+Sn=1 to 07", $g_n = \frac{1}{3} \left(1 - p_n \right)$ 複数 おくときは常に かき $g_n + V_n + S_n = g_n + g_n + g_n$ $= \frac{1}{3} \left(\left| - \left(\frac{3}{4} \cdot \left(-\frac{1}{3} \right)^{N-1} + \frac{1}{4} \right) \right)$ $= -\frac{1}{4} \cdot \left(-\frac{1}{3}\right)^{n-1} + \frac{1}{4} \times 73.$ 女妥当性于工"门!